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Energy dissipation in ceramic matrix composite (CMC) materials is controlled by two main mechanisms: fiber 
bridging and interfacial damage. The magnitude and interaction of these mechanisms are herein explained, 
mathematically formulated and phenomenologically convoluted in an expression that can directly assess the 
experimentally observed macromechanical response of CMCs. The expression is derived on the force-
displacement domain and can be scaled up to predict the bridging stress versus crack opening displacement 
behaviour of the material. The theoretical predictions are compared to macromechanical experimental results 
from SiC-fibre reinforced glass matrix laminates of varying dimensions as well as real bridging stress values 
measured directly at the microscale using Laser Raman Miscoscopy on the same materials. The model was 
independently used to predict the mechanical response of hypothetical composite systems with different fibre and 
interfacial energy dissipation potentials. A dramatic dependence of interfacial shear stress on the mechanical 
performance was found and is discussed in the text.   
 
INTRODUCTION 
 
While ceramics combine unique thermal and 
mechanical properties, they suffer from extreme 
brittleness, hence also unstable catastrophic failure. 
These characteristics had limited their use in high 
temperature applications until the discovery of 
Ceramic Matrix Composites (CMCs) unleashed the 
potential of ceramics by introducing mechanisms that 
decreases the energy available for the catastrophic 
work of crack advance at the crack tip by consuming 
part of the externally applied energy. Significant 
improvements in crack growth resistance, damage 
tolerance, toughness and strength were achieved with 
the introduction of long, continuous fibres in CMCs, 
in the mid-1990s. Since then, the interest in ceramic 
matrix composite research has increased considerably 
and CMCs have efficiently replaced metals in 
applications such as aircraft brakes, thermal barriers, 
turbine nozzles, space shuttle parts and many more. 
The Space Shuttle Columbia disaster of February 1st, 
2003, due to the failure of the Ceramic Matrix 
Composite panel on the leading edge of the Shuttle’s 
left wing (NASA, 2003), draw new scientific interest 
in CMCs. Research is concentrated in understanding 
and quantifying the role of the energy dissipation 
mechanisms that develop during composite loading 
and determine the mechanical performance of the 
composite. Crack bridging by intact fibers and pull-

out of failed fibers are the main energy dissipation 
mechanisms developing in CMCs, while interfacial 
debonding and crack deflection consume smaller 
amounts of energy. All four mechanisms are directly 
or indirectly related to the properties and performance 
of the interface, which, despite its small thickness, is 
essentially, responsible for the overall mechanical 
behaviour of the composite. 
 
Conventional fracture mechanics approaches such as 
the R-curve (Cox, 1991; Fett, Munz and Geraghty, 
2000) cannot approach the contributions and quantify 
the interactions of the composite phases 
independently, hence these approaches are incapable 
of assessing the contribution of the energy dissipation 
mechanisms in the mechanical response of the 
material. To overcome this shortcoming of fracture 
mechanics, various bridging laws have been proposed 
that correlate the stress on fibers bridging a macro-
crack and the instant crack opening displacement 
(COD) (Foote, Mai and Cotterell, 1986). Currently 
available bridging laws are formulated based on 
theoretical approaches such as statistics (Sutcu, 1989; 
Thouless and Evans, 1988;  Llorca and Singh, 1991), 
micromechanical models (Rausch, Kuntz and 
Gratwohl, 2000), J-integral considerations (Sorensen 
and  Jacobsen, 1998; Jacobsen and Sorensen, 2001), 
compliance approaches (Hu and Mai, 1992; Pappas 
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and Kostopoulos, 2001), and stress intensity (Fett and 
Munz, 1995). The major problem in such previous 
studies is that, by considering the bridging 
mechanism alone, the contribution of the pull-out 
mechanism, which appears after the first fibre failure 
and grows to dominant extents, is overlooked. To this 
end, we have already shown that using simple 
Weibull statistics concepts and rational conditions, a 
fracture law can be developed that assesses the 
mechanical behaviour of the composite (Dassios, 
Kostopoulos and Steen, 2007). Another shortcoming 
of the bridging law approach is the lack of 
experimental values of bridging stress from CMCs 
that are needed to validate the theoretical predictions. 
To this end, Laser Raman Microscopy (LRM) is a 
leading technique in capturing real-time stress and 
strain values at the microscale. We have shown that 
the use of LRM can be extended to measuring 
bridging stresses on individual fibres in ceramic 
matrix composites, in situ during testing (Dassios et 
al, 2003b).  
 
We present herein a phenomenological model for the 
assessment of the mechanical response of ceramic 
matrix composites and we validate it across real, in 
situ measurements of bridging stresses captured at the 
microscale on a CMC using LRM. The model is 
based on the addition of the contributions of the 
matrix, fibres and interface to the total mechanical 
response of the composite. The formulation is derived 
on the force-displacement domain to capture the 
originally recorded behaviour and is scaled up to 
predict the bridging stress of the material. Model 
usage is not exclusive to CMCs and can be extended 
to any brittle-matrix composite system exhibiting 
similar energy dissipation characteristics. The model 
is employed to understand the role of key material 
properties in the overall macromechanical response of 
the CMCs while the ability of the model to predict 
the fracture behaviour of such materials composite is 
discussed.  
 
 
 

THEORETICAL  
 
Energy dissipation in brittle-matrix composites 
Stable crack growth in a ceramic matrix composite 
with a moderately strong interface (weak enough for 
debonding, strong enough for efficient stress transfer) 
under Mode I loading commences with an increase in 
the system’s energy due to external loading. A crack 
propagates from a notch root or a critically-sized 
defect in the matrix when the fracture toughness 
value KI, or energy GI, associated with the notch or 
defect exceeds the critical values, KIc, or GIc 
respectively. With further energy input, the crack tip 
will extend and reach the fiber boundary where it will 
deflect along the fiber/matrix interface causing 
interfacial debonding (Fig. 1a). With further loading, 
the energy consumed in debonding will eventually 
balance the work required for further crack growth 
and the crack will propagate along the energetically 
most preferable path. The crack will have deflected if 
the new crack plane does not coincide with the plane 
of the initial notch. Behind the crack, intact fibers 
bridging the crack faces are stretching in air within 
that region while sliding of the fibers along the 
debonded interface gives rise to frictional forces (Fig. 
1c). These fibers carry bridging stresses, thus they 
consume, locally, a portion of the external energy 
hence they decrease, by the same amount, the energy 
available for catastrophic crack growth. Debonding, 
deflection, bridging and sliding develop in a similar 
manner every time the advancing crack encounters 
new fibers (Fig. 1d). Further external energy input 
will eventually balance the critical energy for fiber 
fracture. This amount of energy is less than the value 
predicted by fiber strength because, in accordance 
with fracture mechanics expectations, real fibers are 
non-ideal media that contain flaws and fail at 
locations predetermined by their surface flaw 
distribution (Sutcu, 1989). It is then expected that 
fiber failure will not occur within the crack faces 
where fibers stretch freely but will confine within the 
debonded length where sliding of the fiber along the 
rough interface will render the dimensions of surface 
flaws to critical values. It has also been shown that 
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the debond length is usually much larger than the 
instant crack opening displacement, hence also by a 
mechanics of materials point of view, the probability 
of a fibre failing within the matrix environment 
(giving rise to pull-out) is much larger than the 
probability of failing within the crack faces (Dassios, 
2003a). With further loading, fibers that have failed 
within the matrix environment will pull-out (Fig. 1c) 
while their sliding along the debonded interface will 
give rise to more frictional forces. The energy 
consumed as friction is the contribution of the 
interface to the total energy dissipation potential of 
the composite. This contribution can be significant 
depending on the interface and considering the vast 
surface area available for sliding around the fibers in 
a composite. After complete fibre failure, the pull-out 
mechanism is the sole mechanism controlling the 
composite’s mechanical behaviour and remains active 
until all fibres tips have completely disengaged from 
the matrix environment. 
 
Phenomenological model formulation 
The model invokes the fundamental argumentation 
that the total load carried by the composite at each 
loading instance is the sum of loads carried by its 
constituents individually, namely the matrix, the 
fiber, and the interface. Based on the original Weibull 
distribution function rationale, we construct a two-
parameter model that assesses the role of the matrix 
and fibres in the fracture procedure and a modified 
exponential decay function for the frictional pull-out 
contribution. The generalized forms of the proposed 
probability distribution function and cumulative 
distribution function, respectively, are given by: 
 

  ( ; , ) exp / 0; , 0af x a b Cx x b x a b     (1)  

  ( ; , ) 1 exp / aP x a b x b      (2) 

 
where a is the shape parameter, b the scale parameter, 
and C is a constant. The appropriateness of Eq. 1 and 
2 in describing the fracture of ceramic composite 
constituents, stems from the fact that they predict a 

linear response of the dependent variable for small x 
values, as encountered in a linear elastic regime, in 
combination with a steep decay at higher x values, 
compatible with a catastrophic, step-wise, fracture. 
Logical conditions are used to correlate the 
magnitudes and order of appearance of the individual 
contributions. The model assumes that equal strain 
conditions apply among the constituents, an 
assumption that is valid for extension-controlled 
loading.  
 
To approach the matrix contribution to the total load 
of the composite we argue that crack propagation 
within matrix parts secluded between adjacent fibres 
or fibre bundles, as well as crack deflection, are 
mechanisms that contribute to a gradual matrix 
failure. The relevant distribution function that 
approaches the load carried by the matrix, ( )mF u at a 
displacement u , follows from Eq. 0:  
 

( ) e

am

m

u
b

m mF u C u
 

 
        (3) 
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Fig. 1: Evolution of energy dissipation mechanisms 
during crack propagation in a brittle matrix 
a) First crack growth, crack front debonding and 
initial bridging, b) Extended bridging and sliding of 
intact fibers along the debonded interface, c) Fibre 
pull-out and fully developed mechanisms 
 
 

 
                a.                                           b.  
    c. 
 
 
In Eq. 3, ma  and mb  are the shape and location 
parameters of the distribution for the matrix. In the F-
u domain, the term mC should represent the initial 

slope of the curve, hence this term is the inverse 
elastic compliance of the matrix. Eq (3) then 
becomes:  
 

(1 )
( ) e

am

m

u
f m b

m
S V E

F u u
l

 
 
 


     (4) 

 
Where l  is the gauge length, S  is the cross sectional 
area of the composite, fV  is the fibre volume fraction 
and mE  is the matrix elastic modulus. 
 
The intact fibre contribution to total load-
displacement response of the material can be written 
in analogy to Eq. 4 as: 
 

( ) e

a f

f

u
bf f

f
SV E

F u u
l

 
  
        (5) 

 
where fa  and fb  are the shape and location 
parameters for the fibres and fE is their elastic 
modulus. 
 
The contribution of a moderate interface to the total 
load stems mainly from the shear forces that develop 
during sliding of intact and failed fibres along the 
debonded interface. Given the fact that deformation 
of intact fibres along the debonded interface (within 
the matrix environment) is very small compared to 
their deformation within the crack flanks, it is safe to 
assume that forces due to constrained sliding of intact 
fibres’ surfaces along the debond length are 
negligible compared to forces developing during free 
sliding of pull-out fibres along the whole debond 
length. Then, a force balance around the fibre gives 
the axial component, if , of shear forces acting on a 
single fibre due to its interaction with the interface: 
 

2i f pf R L        (6) 
 
where fR  is the fibre radius, pL  is the average pull-
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out length and   is the shear strength of the interface. 
Eq. 6 holds for a single fibre. The total interfacial 
contribution to composite load, iF , is the product of 
the right-scale of Eq. 6 and the total number of failed 
fibres pulling out of the matrix, failN , and can be 
expressed as: 
 

( ) 2 ( ) ( )i f p failF u R L N u u        (7) 
 
where ( )u  is the inactive fiber correction, 
accounting for decay in interfacial load due to 
successive disengaging of fiber tips from the matrix 
environment (complete pull-out). failN can be 
calculated from the total number of 0o fibres in the 
composite that are available for pull-out, o0N , and the 
proposed cumulative distribution function (eq 2), as: 

 
o0

1

a f

f

u
bfailN u

e
N

 
  
       (8) 

 
In turn, o0N can be calculated by the total volume 
occupied by 0o fibres in the composite as: 
 

o
2

0 f fN R SV k      (9) 
 
where k is the fraction of fibres contributing to pull-
out. In a symmetrically stacked laminate, k=0.5.  
Based on a previous proof that the decrease in load 
due to pull-out of failed fibres follows a first order 
exponential decay function with a decay constant 
equal to the mean pull-out length, pL , (Sutcu, 1989). 
the inactive fibre correction can be expressed as:    
 

( ) e p

u
Lu



      (10) 
 
Using Eq. 8, 9 and 10, the interfacial contribution to 
composite load, Eq. 7, can be written as: 
 

2
( ) 1 e

a f

f p

u u
b Lf p

i
f

SV kL
F u e

R


 
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 

 
 

  
 
 

  (11) 

 
The interfacial contribution becomes active only after 
first fiber failure, hence Eq. 11 must be shifted in to 
the right by the instant displacement on the onset of 
fibre fracture, *u : 
 

* *

2
( ) 1

a f

f p

u u u u
b Lf p

i
f

SV kL
F u e e

R


     
 

 
 

  
 
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  (12) 

 
The total load-displacement behaviour of the 
composite can be expressed as the sum of the 
individual contributions, Eq. (4), (5) and (12): 
 

* **
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 
 

  
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  
   
     

     

(13) 
 
 
In brittle-matrix composite fracture, any non-linear 
contribution to the recorded load stems from 
irreversible damage such as the bridging and pull-out 
mechanisms. Likewise, in tensile specimen 
configurations, the displacement recorded in the non-
linear regime corresponds purely to crack flank 
separation, i.e. crack opening displacement. Then, the 
bridging stress can be obtained by excluding the 
elastic displacement from the stress-equivalent of Eq. 
13. In practice, the subtraction of the elastic 
displacement from the total displacement of the 
system, gives the crack opening displacement, ( )u , 
as: 
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( ) ( )comp compu u C F u      (14) 
 
where compC  is the elastic compliance of the 
composite. The bridging stress, ( )br   is then 
expressed by:  
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     

(15) 

 
Where * is the crack opening displacement 
calculated by Eq. 14 for *u u . 
 
EXPERIMENTAL 
The proposed model is validated against experimental 
values of bridging stresses captured directly at the 
microscale on individual bridging fibres, during real 
testing time of a continuous SiC-Nicalon fiber 
reinforced glass-ceramic matrix cross-ply laminate. 

The matrix consisted of magnesium, aluminium, 
silicon and lithium oxides (MgO, Al2O3, SiO2 and 
LiO2) and was processed via the sol-gel route. 
Double-edge notch (DEN) specimens of dimensions 
120  12  2 mm3 (l  w  t) and 120  10  3 mm3 (l 
 w  t) were machined from 2mm and 3mm thick 
plates of [0/90]2s fibre orientations. It entails that, for 
the specific laminates, k=0.5. The notch-to-width 
ratio was maintained at 0.4. 
 
Testing was interrupted periodically and the stress on 
individual bridging fibres visible within the 
separating crack franks after matrix cracking was 
measured by a scanning Raman microprobe. The 
spectroscopic setup used for the collection of bridging 
stresses using the LRM technique has been presented 
elsewhere (Dassios et al, 2003a).  
  
 
 
 
 
 

 
Table 1. Material and specimen constants  

Parameter Symbol Value 
Gauge length  l 25 mm 
Cross sectional area  S 14.4 mm2 (plate t=2mm) 

18 mm2 (plate t=3mm) 

Fibre radius Rf 
7 μm 7 (Simon and 
Bunsell, 1984) 

Fibre volume fraction fV  0.35 (Drissi-Habti, 1997) 

Mean pull-out length pL  690 mm (Brenet et al, 
1996) 

 
Table 2. Initial conditions for the regression 

 
Parameter 

Initial 
Values 

 
Regression outputs 

Bibliographic 
Value 

Fibre  DEN1 DEN2  

SiC-Nicalon Young’s modulus, Ef, GPa 250 190 214 200 (Drissi-
Habti, 1997) 
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Fibre shape parameter, αf 6  2.525 2.520 
2.3-2.7 
(Simon and 
Bunsell, 1984) 

Fibre location parameter, bf, mm 0.15 0.105 0.090 N/A 
First fibre failure displacement,u*, mm 0.05 0.020 0.021 N/A 
Matrix     

Matrix Young’s modulus, Em, GPa 80 63 71 70 (Brenet et 
al, 1996) 

Matrix shape parameter, αm 10  1.895 1.889 N/A 
Matrix location parameter, bm, mm 0.05 0.035 0.039 N/A 
Interface     

Interfacial shear strength,τ, MPa 5 3.04 3.21 2-5 (Brenet et 
al, 1996) 

    
 
RESULTS AND DISCUSSION 
Efficiency of the model 
The load-displacement version of the model, Eq. 13, 
was used to assess the experimentally recorded 
behaviour of the composite. The regression was 
performed iteratively under the x2 reduction criterion. 
Specimen and material properties such as the gauge 
length, l, cross-sectional area, S, fibre radius, Rf, fibre 
volume fraction, Vf, and mean pull-out length Lp were 
held constant; the values used in the model for these 
properties are presented in Table 1. The remaining 
parameters in Eq. 13 were left to unconditionally vary 
during the regression, however initial values were 
provided and are presented in Table 2. The initial 
values for the elastic moduli and interfacial shear 
strength in Table 2 are approximate engineering 
values, the shape parameters for the matrix and fibres 
are approximate Weibull moduli values for 
monolithic ceramics and fibres respectively, while the 
location of first fibre failure, u* is calculated at the 
conventional 0.2% strain limit. The location 
parameters for the matrix and fibres distributions are 
empirically set to u* and 3u*, respectively. 
 
A number of restraining conditions were imposed to 
the regression procedures in order to realistically 
relate the succession and interaction of individual 
contributions. First, to simulate the CMC fracture 

characteristic of matrix cracking completion before 
the maximum load is attained, the corrsponding 
contribution, Eq. 4, was constrained in displacements 
lower than those of the maximum load. Second, the 
surviving fibre contribution was not allowed to 
extend into the interfacial pull-out regime. Third, the 
displacement of first fibre failure, u*, used to denote 
the appearance of the interfacial term, was set to 
coincide with the displacement on first fibre failure 
(onset of deviation of the intact fibre dictribution 
from linearity).  
 
The experimental load-displacement curves of DEN 
specimens with different thicknesses and widths were 
used for testing the efficiency of the model. Two 
typical cases are presented herein. We named DEN 1 
a specimen with a width of 12mm and a thickness of 
2mm, and DEN 2 a 10mm-wide and 3mm-thick 
specimen. The output parameters of the regression 
(best-fit values) are listed in Table 2 along with 
reference values for the same properties found in the 
bibliography. The computed behaviours are plotted 
alongside the experimental results in Fig. 2. In order 
to improve readability of the figure, displayed 
experimental data (hollow circle symbols) are 
reduced to 1/50 of the captured points.   
 
Fig. 2. Experimental (hollow cycles data) and 
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theoretically modelled (straight lines) load-
diplacement curves for 2 DEN specimens of different 
sizes. Also shown are the deconvolutions of the 
models into the matrix (dashed lines), fibres (dotted 
lines) and interface (dash-dotted lines) contributions. 

 
The model was very efficient in assessing the 
experimental load-displacement response of the 
composite with all coefficients of correlation 
remaining higher than 99.5%. By observation of the 
regression output values (Table 2), three important 
conclusions can be drawn: First, the output values of 
both regressions varied by no more than 10% among 
the two specimens with different dimensions. Hence 
the modelled behaviour can be considered a material-
intrinsic fracture descriptor for the specific composite 
system. Second, the computed shape parameter for 
the fibres (directly equivalent to their Weibull 
modulus) exhibits minimal scatter and compares 
favourably with the previously established value for 
fibres in air. This finding indicates that fibres in the 
composite fail under a pattern similar to that in air, 
hence their failure mechanism is not critically 
affected by the interaction with the moderate 
interface. Thirdly, the statistical interfacial shear 
stress computed by the regression, with high 
accuracy, at around 3MPa, is a finding of particular 
importance given the large scatter of 
bibliographically available values and the complexity 
associated with the experimental measurement of this 
property. 
 

A mean composite modulus value of 115GPa was 
computed via the rule of mixtures using the modelled 
constituents’ moduli, which compares favourably 
with the bibliographically available value of 123GPa 
for the specific composite system (Drissi-Habti, 
1997). This finding is a separate measure of the 
efficiency of the model.  
 
Experimental vs macromechanical bridging stresses 
The modelled bridging stress distribution and the 
individual fibres and interface contributions are 
computed through Eq. (14) and (15) and plotted in 
Fig. 3. 
 
Fig. 3. Macromechanical (hollow cycles data) and 
theoretically modelled (straight lines) bridging stress 
distributions for the specimens of Fig. 1. The crack 
opening displacement corresponds to the non-linear 
displacement of the system.  

 
 
Typical bridging strain distributions, captured in situ 
and directly at the microscale via the LRM technique, 
are plotted as a function of normalized position along 
the un-notched ligaments of the specimens in Fig. 4. 
In each specimen, at least three steps of LRM 
scanning of the ligaments were performed at key 
instances of the loading procedure: the first step 
within the pure bridging regime was chosen in order 
to capture the axial stress component on surviving 
fibres independently. The following step rested within 
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the mixed regime of fibre and interfacial interaction, 
where a part -but not all- of the fibres had failed and 
were undergoing pull-out, while a third step was 
within the pure interfacial regime where only 
frictional forces give rise to an axial stress 
component. The instant loading level for the 
composite is shown in the smaller plots to the left of 
each distribution. The left-side y-axes of Fig. 4 
represent the experimentally measured wavenumber 
shift, while the right y-axis give the LRM-equivalent 
strain corresponding to the specific shift. Shown in 
hollow cycle symbols are the mean values of 3-5 
LRM strain measurements on the same fibre. The 
associated standard deviation of each set of 
measurements is shown as error bar. 
 
Fig. 4. Directly measured bridging strain distribution 
profiles at the microscale.  
 

 
 
Strain build-up, from zero to a plateau value, was 
observed within a 10% distance from each notch root, 
independently of load level. The plateau value 
remained uniform throughout the rest of the ligament. 
This finding indicates a possible relaxation in fibre 
strain around the notch roots due to local stress 
concentration. The experimental data were fitted with 
exponential functions of the form:  
 

1
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( 1)
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c e x
f x
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



     
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  (16) 

 
where x is the normalized location along the 
ligament, and ci and bi are constants. The regressions 
are shown as solid lines in Fig. 4.  
 
Square symbols data in Fig. 4 correspond to load-free 
fibers that have failed either within the crack opening 
or have prematurely pulled-out completely. As 
expected, the number of such data increases with 
loading. The experimental bridging stress can be 
calculated by multiplying the plateau values of the 
bridging strain distributions by the modelled value 
fiber’s Young’s modulus, ca 200 GPa. The 
experimental bridging stresses that were measured 
directly via LRM on 3 DEN specimens are plotted in 
comparison to the macromechanical counterpart in 
Fig. 5. The observed inverse relation between the two 
stresses is characteristic of the different length scale 
over which the two stresses are expanding. The 
Raman stress of individual fibres that deform linear-
elastically up to failure is local, at the microscale, and 
monotonically increasing up to failure. On the other 
hand, the macromechanical value is affected by the 
decreasing number of intact fibers due to successive 
failure while assuming a constant cross sectional area. 
The observed discrepancy is a magnification of the 
typical strength/failure stress controversy in simple 
tension tests where specimen “necking” leads to 
nominal failure stress values lower than the 
maximum.  
 
Fig. 5. Macromechanical and experimental bridging 
stresses. 
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Reverse usage of the model 
The efficiency of the established model in predicting 
the fracture behaviour of a composite material with 
similar energy dissipation characteristics, appears to 
be of particular interest. In fact, if all experimentally 
measurable parameters appearing in Table 2 are 
known for the specific material system the model can 
indeed provide the mechanical behaviour of the 
composite and a test is not needed.  
 
To demonstrate this potential of our model, we will 
use it to inversely predict the mechanical response of 
3 hypothetical composite systems with different 
energy dissipation potentials. The first case study is a 
composite with an almost negligible bridging 
mechanism where fibres fail abruptly within the 
matrix environment soon after matrix cracking. We 
will model this system with a large fibre shape 
parameter allowing for a narrow failure distribution. 

The second case concerns a composite of minimal 
interfacial energy dissipation characteristics, 
associated with small pull-out lengths. The third 
material is one with strong interfacial bonding, 
modelled by a high value of τ. Table 3 lists the values 
of all properties entering the model for each case 
study. The values of all unvaried properties where 
kept equal to the mean values obtained previously for 
the specific CMC. A 12mm wide, 2mm thick 
specimen with 0.4 notch-to-width ratio is assumed. 
The corresponding predicted load-dislacement curves 
are shown in Fig. 6.  
 
Fig. 6. Predicted load-displacement curves for 
composite systems with different energy dissipation 
mechanisms 

 
 

Table 3. Model parameters for different case studies 
 

 
 
Parameter 

 
Case 1 
Weak Bridging 

 
Case 2 
Weak pull-out 

 
Case 3 
Strong interface 

Specimen    
Gauge length, l, mm 25 25 25 
Cross sectional area, S, mm2 14.4 14.4 14.4 
Fibre radius, Rf, μm 7 7 7 
Fibre volume fraction, Vf 0.35 0.35 0.35 
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Fibre    
SiC-Nicalon Young’s modulus, Ef, GPa 202 202 202 
Fibre shape parameter, af 20 2.522 2.522 
Fibre location parameter, bf, mm 0.097 0.097 0.097 
First fibre failure displacement, *u , mm 0.020 0.020 0.020 
Matrix    
Matrix Young’s modulus, Em, GPa 67 67 67 
Matrix shape parameter, am 1.892 1.892 1.892 
Matrix location parameter, bm, mm 0.037 0.037 0.037 
Interface    
Interfacial shear strength, τ, MPa 3.12 3.12 10 
Pull-out length, μm 700 50 700 
   

The effect of the bridging mechanism in the overall 
fracture behavior of a brittle matrix composite is 
demonstrated in the first graph of Fig. 6. The absence 
of the particular mechanism leads in a sharp decrease 
in intact fibre contribution and in an almost linear-
elastic mechanical behavior up to fracture. Hence the 
energy dissipation potential of the bridging 
mechanism is critical in controlling the composite 
failure mode. However, since the pull-out mechanism 
has not been neglected, the specimen separates with 
progressive fibre ends disengaging from the matrix 
environment, giving rise to exponentially decreasing 
frictional forces. By comparison with the first graph 
of Fig. 2, it is observed that the narrow failure 
distribution is associated with a 50% increase in the 
maximum load attainable by the laminate. The form 
of the modeled curve is identical to that predicted by 
other fundamental studies (Thouless and Evans, 
1988).  
The effect of pull-out on the macromechanical 
response the composite is shown in the center graph 
of Fig. 6. The linear elastic part of the curve and the 
maximum load are identical to the general case (left 
graph in Fig. 2), however the frictional “tail” of the 
curve is not present and composite load appears to 
decrease smoothly, as bridging fibres progressively 
fail within the crack flanks. The dramatic effect of the 
interface on the mechanical performance of the 
composite is demonstrated in the third (right) graph of 
Fig. 6. A three-fold increase in the value of the 

interfacial shear strength (ISS), τ, leads not only to a 
100% increase in the maximum load by mainly to a 
radical increase in the energy dissipation potential of 
the material after that point. According to the 
aforementioned model formulation rationale, higher 
ISS values are related to increased frictional forces 
during sliding of the fibres’ surfaces along the 
debonded interface, a phenomenon that gives rise to 
higher shear loads with accordingly high axial 
components. 
Based on the above observations, it is entailed that the 
precision in measuring the values of the composite 
constituents’ properties, and mainly of the interface, 
defines the expected ability of the model to predict the 
macromechanical behavior of the material. However 
the model can reconcile any material property 
ignorance. One tensile test is sufficient for the model 
to establish these values, so that it can subsequently 
be used to intrinsically describe the composite’s 
mechanical performance. 
       
Comparison with a fundamental model 
Based on weakest link statistics and earlier studies, 
Thouless and Evans (1988) have offered a highly-
referenced fundamental model for assessing the 
fracture behavior of ceramic matrix composites. The 
derivation of their model was based exclusively on the 
mathematical formulation of the physics and statistics 
of the fracture mechanisms of CMCs, which contrasts 
the phenomenological character of the model 
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proposed in the current study. According to their 
model, the equation that relates the composite stress 
after first matrix crack, σ, to the instant crack opening 
displacement, δ, is given by: 

1
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where Σ is the value of stress for which 50% of the 
fibres have failed, m is the Weibull shape parameter 
of the fibres and α, v, ξ and γ are given by: 
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The first term of the right-scale of equation 17 
represents the bridging stress while the second term is 
the pull-out contribution. Using the mean values 
obtained previously for the CMC of our study (Table 
2), the Thouless-Evans approach to the mechanical 
behavior of our material is calculated through 
equations 17-21. The result is plotted along the 
experimental behavior and the model of the current 
study in Fig. 7.  
 
By examination of Fig. 7 it is observed that the 
reference model cannot fully assess the fracture 
behavior of the current CMC. While the maximum 
bridging stress is close to the experimentally recorded 
value, the decrease is stress after that instance is much 
steeper in the T-E model than it is in reality. 
Secondly, the experimental transition from the fibre 
regime to the interfacial regime is gradual, in contrast 
to the T-E expectations. Thirly, the interfacial 
contribution appears to decrease linearly in the 
reference model while both experiment and the 

currently proposed model agree to an exponential 
decrease.  
 
Figure 7. Comparison of experimental data to 
modeled behaviours  

 
 
CONCLUSIONS 
 
The energy dissipation mechanisms of CMCs were 
explained, macromechanically analyzed, 
mathematically simulated and directly measured at the 
microscale on a SiC-fibre reinforced glass-matrix 
composite using the LRM method. The performance 
of the phenomenological load-displacement 
expression, which was established by coupling the 
individual contributions of the matrix, fibres and the 
interface, was successfully evaluated across the 
experimental load-displacement response of the 
material. All regression output parameters ranged 
within 10% among double-edge notch samples of 
different dimensions. The established expression was 
thereafter used inversely to predict the mechanical 
response of various hypothetical composite systems 
with different fibre and interfacial energy dissipation 
potentials, as well as to understand their magnitude 
and interactions. Interfacial shear strength was 
identified as the key parameter dominating the 
mechanical behaviour of CMCs. The real stress values 
measured on individual fibres using LRM, were 
significantly higher than both their macromechanical 
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and theoretical counterparts, due to the real-versus-
nominal stress discrepancy found in tensile 
configurations.  
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